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1. INTRODUCTION. In the seventeenth century, Fermat defined the sequence of

numbers Fn = 22n
+ 1 for n ≥ 0, now known as Fermat numbers. If Fn happens to be

prime, Fn is called a Fermat prime. Fermat showed that Fn is prime for each n ≤ 4,

and he conjectured that Fn is prime for all n (see Brown [1] or Burton [2, p. 271]).

Almost one hundred years passed before Euler demonstrated in 1732 that F5 is in fact

composite. Ironically, it is now known that Fn is composite for many values of n and, as

of the date this article was written, no new Fermat primes had been discovered. In this

paper we solve a problem in finite groups whose solution relies heavily on techniques

from elementary number theory. While it is not unusual for this phenomenon to occur,

the main result is surprisingly a direct consequence of the fact that F5 is composite.

2. SOME PRELIMINARIES. Throughout this article, G will be a finite abelian

group, |G| will denote its cardinality, and (Zm)t will be used to indicate Zm × · · · × Zm
︸ ︷︷ ︸

t factors

.

Definition 1. Let x be an element of G. We define the order subset of G determined

by x to be the set of all elements in G with the same order as x .

Definition 2. A group G is said to have perfect order subsets if the number of elements

in each order subset of G is a divisor of |G|.

We note that the property of having perfect order subsets is invariant under isomor-

phism.

Example 1. Let G = Z2 × Z4 × Z3. Observe that |G| = 24. Then G has perfect order

subsets, as indicated by the following table:

Element Cardinality of

Order Order Subset

1 1

2 3

3 2

4 4

6 6

12 8

Since Z3 has two elements of order 3, it follows that Z3 does not have perfect order

subsets. Consequently, we see from Example 1 that the property of having perfect

order subsets is not necessarily passed on to subgroups.
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Note that in general, when p is an odd prime, every nonidentity element of Zp has

order p since, by Lagrange’s theorem [3, p. 202], the order of any element divides the

order of the group. Hence, Zp has exactly p − 1 elements of order p and therefore

does not have perfect order subsets. Generalizing further, if C is a cyclic group with

|C | a power of an odd prime p, then C contains exactly one subgroup of order p, so C

has exactly p − 1 elements of order p. Thus C does not have perfect order subsets.

Proposition 1. Suppose that G has perfect order subsets and that p is a prime divid-

ing |G|. Then p − 1 divides |G|.

Proof. To prove this result, we count the number of elements in G of order p. By

the Fundamental Theorem of Finite Abelian Groups (see Hungerford [3, p. 256]),

G % C1 × C2 × · · · × Ct × M , where p does not divide |M| and each Ci is a cyclic

group with |Ci | a positive power of p. Each element of G can be thought of as an

ordered (t + 1)-tuple. An element whose order is less than or equal to p must have

the identity of M as its entry in the t + 1 position in the tuple. Each of the other en-

tries must be an element of order at most p in its respective group. Such a tuple will

have order exactly p in G, except when the identity appears in each entry. Hence the

total number of elements of order p in G is pt − 1 = (p − 1)(pt−1 + pt−2 + · · · + 1).

Since G has perfect order subsets, the conclusion of the proposition follows.

Corollary 1. If G has perfect order subsets and is nontrivial, then |G| is even.

While Proposition 1 imposes severe restrictions on the cardinality of a group with

perfect order subsets, it turns out that such groups are, nonetheless, quite plentiful.

This fact is formalized in Theorem 1, but some groundwork is needed first.

Lemma 1. Let a, b, and t be positive integers with b ≤ a, and let G % (Zpa )t , where

p is a prime. Then the number of elements in G of order pb is (pb−1)t(pt − 1).

Proof. Akin to the proof of Proposition 1, we think of an arbitrary element of G as

an ordered t-tuple, where each entry is an element from Zpa . An element of G whose

order is pb must have an element of order pb as an entry in at least one of its t positions.

To count such elements systematically, we first count the number of tuples with an

element of order pb in the first position, followed by elements of any order less than or

equal to pb in the next t − 1 positions. The number of elements of order pb in Zpa is the

number of generators of the unique cyclic subgroup of Zpa of order pb. This number

is φ(pb) = pb − pb−1, where φ is Euler’s totient function [2, p. 156]. It determines the

number of choices for the first position in the t-tuple. Since we can have any element

of Zpa with order less than or equal to pb in the next t − 1 positions, and there is

exactly one subgroup of order pc for each c ≤ b (each having φ(pc) generators), there

are

1 + φ(p) + φ(p2) + · · · + φ(pb−1) + φ(pb)

= 1 + (p − 1) + (p2 − p) + · · · + (pb−1 − pb−2) + (pb − pb−1) = pb

choices for each of those positions. This amounts to

φ(pb)(pb)t−1

such elements in G.
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Next, we count tuples with an element of order strictly less than pb in the first

position, an element of order exactly pb in the second position, and an element of Zpa

with order less than or equal to pb in the next t − 2 positions. This leads to

1 + φ(p) + φ(p2) + · · · + φ(pb−1)

= 1 + (p − 1) + (p2 − p) + · · · + (pb−1 − pb−2) = pb−1

choices for the first position, φ(pb) choices for the second position, followed by

pb choices for the next t − 2 position. That is, there are

pb−1φ(pb)(pb)t−2

such elements in G.

We continue this process, counting elements with entries at the beginning of the

tuple having order less than pb, precisely one entry of order exactly pb, and then

entries of order less than or equal to pb. Summing the element totals so obtained yields

an expression for the total number of elements of order pb in G:

φ(pb)(pb)t−1 + pb−1φ(pb)(pb)t−2 + · · · + (pb−1)t−2φ(pb)pb + (pb−1)t−1φ(pb)

= φ(pb)(pb−1)t−1[pt−1 + pt−2 + · · · + p + 1]

= pb−1(p − 1)(pb−1)t−1

(
pt − 1

p − 1

)

= (pb−1)t(pt − 1).

Lemma 2. Let G % (Zpa )t × M and Ĝ % (Zpa+1)t × M, where a and t are positive

integers and p is a prime that does not divide |M|. Suppose that d is the order of an

element in Ĝ and that pa+1 does not divide d. Then both G and Ĝ contain the same

number of elements of order d.

Proof. An arbitrary element of Ĝ may be represented as an ordered pair (x, y), where

x is an element of (Zpa+1)t and y is an element of M . The order of (x, y) is the least

common multiple of the orders of x and y. Since p does not divide |M|, this is simply

the product of the two orders. Therefore, if d is the order of the element (x, y) and pa+1

does not divide d, we can factor d as pbm, where 0 ≤ b ≤ a: pb is the order of x and

m is the order of y. Consequently, to count the number of elements of order pbm in Ĝ,

we count the number of elements in (Zpa+1)t of order pb and multiply that quantity by

the number of elements of order m in M . By Lemma 1, this total is precisely the same

as the number of elements of order pbm in G.

We are now in a position to prove the following.

Theorem 1 (Going-Up Theorem). Let G % (Zpa )t × M and Ĝ % (Zpa+1)t × M,

where a and t are positive integers and p is a prime that does not divide |M|. If G has

perfect order subsets, then Ĝ has perfect order subsets.

Proof. As in the proof of Lemma 2, let (x, y) be an element of Ĝ, where x is an

element of (Zpa+1)t and y is an element of M . Let d be the order of (x, y). Assume ini-

tially that d is not divisible by pa+1. Since G has perfect order subsets, Lemma 2 guar-

antees that the cardinality of the order subset of Ĝ determined by (x, y) divides |Ĝ|.
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Suppose next that d is divisible by pa+1. Then the order of x in (Zpa+1)t is exactly pa+1,

and we can factor d as pa+1m, where m is the order of y in M . Let k be the number of

elements in M that have order m. By Lemma 1, the total number of elements of order d

is (pa)t(pt − 1)k. To complete the proof, we must show that this number does indeed

divide |Ĝ|. Applying Lemma 1 to G tells us that the number of elements in G having

order pam is (pa−1)t(pt − 1)k, which divides |G| because G has perfect order subsets.

Since |Ĝ| = pt |G|, it follows that pt(pa−1)t(pt − 1)k = (pa)t(p − 1)k divides |Ĝ|.

We give some examples to illustrate Theorem 1.

Example 2. It is easy to verify that the group (Z2)
4 × Z3 × Z5 has perfect order

subsets. The going-up theorem, allowing us to increase the exponent on any of the

primes that appear, provides new groups with perfect order subsets. For example,

(Z2)
4 × Z9 × Z5 and (Z2)

4 × Z3 × Z25 also have perfect order subsets. In addition,

applying the going-up theorem successively yields groups such as (Z16)
4 × Z9 × Z125

with perfect order subsets.

The important fact we learn from the going-up theorem is that we can generate new

groups with perfect order subsets from existing ones and, by this mechanism, exhibit

an infinite number of such groups. This raises a natural question: Is it possible to go

the other way? That is, given a “big” group with perfect order subsets, can we develop

a technique for finding a “smallest” nontrivial subgroup with perfect order subsets?

The answer is yes, and we divide the process for doing so into two steps in order to

make the idea more transparent. The details are given in Theorems 2 and 3, but since

the proofs are essentially identical, we omit the proof of Theorem 3.

Theorem 2 (Chopping-Off Theorem). Suppose that G has perfect order subsets and

that G % Zpa1 × Zpa2 × · · · × Zp
as−1 × (Zpas )t × M, where p is a prime not dividing

|M| and a1 ≤ a2 ≤ · · · ≤ as−1 < as are positive integers. Then Ĝ % (Zpas )t × M also

has perfect order subsets.

Proof. In this proof, we again think of an element in Ĝ as an ordered pair (x, y), with

x an element of (Zpas )t and y an element of M . As in the proof of Lemma 2, the order

of (x, y) can be factored as pbm with b ≤ as , where pb is the order of x and m is the

order of y. Additionally, suppose that pck, where p does not divide k, is the number

of elements in M that have order m. Then, by Lemma 1, the number of elements in Ĝ

that have order pbm is

(pb−1)t(pt − 1)pck.

We proceed to show that this number is a divisor of |Ĝ|. Again utilizing counting

techniques developed in the proofs of Lemma 1 and Lemma 2, we calculate the number

of elements in G having order pas m to be

pa(pas−1)t(pt − 1)pck,

where a =
∑s−1

i=1 ai . This number divides |G|, for G has perfect order subsets. We

conclude that c ≤ t and that (pt − 1)k is a divisor of |M|. Thus, (pb−1)t(pt − 1)pck

divides |Ĝ|, hence Ĝ has perfect order subsets.
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Theorem 3 (Going-Down Theorem). Suppose that G has perfect order subsets and

that G % (Zpa )t × M, where p is a prime not dividing |M|. Then Ĝ % (Zp)
t × M also

has perfect order subsets.

Here is a very simple illustration of the use of these two theorems.

Example 3. In Example 1, we saw that Z2 × Z4 × Z3 has perfect order subsets. Ac-

cording to the chopping-off and going-down theorems, Z2 × Z3 also has perfect order

subsets.

In light of the chopping-off and going-down theorems, given a nontrivial group G

with perfect order subsets, we can limit our search for the smallest nontrivial subgroup

of G with that property to subgroups H whose Sylow p-subgroups are elementary

abelian for each prime p; i.e., each Sylow p-subgroup of H is isomorphic to (Zp)
t for

some positive integer t . In particular, since a nontrivial group G with perfect order sub-

sets has even order (Corollary 1), there exists a subgroup H of G with perfect order

subsets whose Sylow 2-subgroup is elementary abelian. On the basis of these remarks,

we formalize the relevant notion of “smallest” in the following definition.

Definition 3. Suppose that G % (Z2)
t × M , where |M| is odd. We call G a minimal

POS group if G has perfect order subsets and there is no proper subgroup M̂ of M

such that (Z2)
t × M̂ has perfect order subsets.

Example 4. Both Z2 × Z3 and Z2 have perfect order subsets, but only Z2 is a minimal

POS group.

3. THE MAIN THEOREM. When G % (Z2)
t × M is a minimal POS group with

|M| square-free, the factor M is uniquely determined by the value of t . This is the

content of Theorem 4, for which some preliminary remarks might prove useful. Since

(Z2)
t is a factor of G, there are exactly 2t − 1 elements of order 2, and since G has

perfect order subsets by the definition of a minimal POS group, 2t − 1 must divide |G|.
Accordingly, G (hence, M) must contain a Sylow p-subgroup for each prime p divid-

ing 2t − 1. Thus, we start with a particular value of t , and we attempt to build a min-

imal POS group by “attaching” cyclic factors to (Z2)
t for each of the primes dividing

2t − 1. Because a cyclic group whose order is a power of p has exactly p − 1 elements

of order p, this process is somewhat tricky for the following reason: when we attach

a cyclic factor corresponding to a particular prime divisor p of 2t − 1, we must then

ensure that the prime divisors of p − 1 also divide |G|; otherwise G would not have

perfect order subsets. We might then have to attach even more cyclic factors, which

could conceivably produce a factor M whose order is not square-free. In addition, there

is no obvious reason why this process of attaching factors should eventually terminate

in the desired minimal POS group. It turns out that there are values t for which we

can build minimal POS groups, but that there are only finitely many such values. The

factors of 2t − 1 that, as previously indicated, play a role in the construction of M ,

are occasionally Fermat numbers. As t grows, we can continue to build minimal POS

groups as long as these Fermat numbers are prime. Once we encounter a composite

Fermat number, however, the process grinds to a halt. This result is summarized in the

following theorem.

Theorem 4. Let G be a finite abelian group of even order whose Sylow p-subgroup

is a cyclic group of order p for each odd prime p dividing |G|. If G is a minimal POS

group, then G is isomorphic to one of the following nine groups:
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• Z2

• (Z2)
2 × Z3

• (Z2)
3 × Z3 × Z7

• (Z2)
4 × Z3 × Z5

• (Z2)
5 × Z3 × Z5 × Z31

• (Z2)
8 × Z3 × Z5 × Z17

• (Z2)
16 × Z3 × Z5 × Z17 × Z257

• (Z2)
17 × Z3 × Z5 × Z17 × Z257 × Z131071

• (Z2)
32 × Z3 × Z5 × Z17 × Z257 × Z65537.

The following lemma will be useful in the proof of Theorem 4.

Lemma 3. Let p be a prime, let a be a positive integer, and let q be a prime divisor

of 2pa
− 1. Then p divides q − 1.

Proof. Since 2pa
is congruent to 1 modulo q, 2pa

represents the identity element in

the multiplicative group (Zq)
∗ of nonzero elements of Zq . It follows that the order of 2

in (Zq)
∗ divides pa , whence this order is divisible by p. By Lagrange’s theorem, the

order of an element in a finite group divides the order of the group, and since the order

of (Zq)
∗ is q − 1, we conclude that p divides q − 1.

Proof of Theorem 4. It is straightforward to check that each of the nine indicated

groups is, in fact, a minimal POS group. We must verify that the list is exhaustive. As-

sume that G % (Z2)
t × M is a minimal POS group, where |M| is odd and square-free.

There are 2t − 1 elements of order 2 in G. Because 2t − 1 must therefore divide |M|,
2t − 1 is square-free. Let p be an odd prime dividing t . Then 2p − 1 divides 2t − 1

and must also be square-free. If q1 and q2 are distinct primes dividing 2p − 1 (hence,

dividing |M|), then p divides both q1 − 1 and q2 − 1 (Lemma 3). Thus p2 divides

(q1 − 1)(q2 − 1), the number of elements of order q1q2 in G, which by hypothesis

divides |M|, a contradiction. Hence 2p − 1 must be prime. Moreover, since p is odd,

we observe that 2p − 2 is divisible by 3. If p1 and p2 are distinct odd primes divid-

ing t , then 9 divides (2p1 − 2)(2p2 − 2), which is the number of elements of order

(2p1 − 1)(2p2 − 1) in G. It follows that 9 divides |M|, another contradiction. Hence,

at most one odd prime p divides t . Similarly, if 2p divides t , where p is an odd prime,

then 9 divides (2t − 1)(2p − 2), the number of elements in G of order 2(2p − 1).

The square-free character of |M| rules out this possibility as well. We infer that t is

necessarily a power of a prime.

Suppose next that t = pa , where p is an odd prime and a ≥ 2. From the forego-

ing discussion we know that 2p − 1 is a prime divisor of 2pa
− 1. Since 2pa

− 1 is

square-free, it follows that there is some prime q (= 2p − 1 that divides 2pa
− 1. From

Lemma 1, we conclude that p2 divides (q − 1)(2p − 2), the number of elements of

order q(2p − 1) in G , again a contradiction. Hence t = pa with a ≤ 1. If a = 0, then

t = 1 and G % Z2, the first group on our list (remember: G is a minimal POS group).

We proceed assuming that a = 1, i.e., t = p. Since 2(2p−1 − 1), the number of ele-

ments of order 2p − 1, divides |G|, we can apply the same analysis to the exponent

p − 1 that we originally applied to t and conclude that p − 1 is a power of 2. This

makes p a Fermat prime.

To summarize: the preceding arguments show that, except for the trivial case in

which t = 1 and G % Z2, either t = p, a Fermat prime for which 2p−1 − 1 divides |G|,
or t = 2a with a ≥ 1. In both of the latter instances we are led to a situation where |G|
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has a factor of the form 22a
− 1 with a ≥ 1. Observe that

22a

− 1 =
a−1∏

n=0

(22n

+ 1) =
a−1∏

n=0

Fn,

from which it becomes clear that F5 divides 22a
− 1 as soon as a ≥ 6. However,

since 3 divides 22a
− 1 and 6700417 is a prime factor of F5, we see that 9 divides

(22a
− 1)(6700416), the number of elements of order (2)(6700417) in G. Thus 9 di-

vides |M|, once more contradicting the fact that |M| is square-free. As a result, a ≤ 5

and t is a member of {2, 3, 4, 5, 8, 16, 17, 32}.
By the remarks that prefaced the statement of Theorem 4, any minimal POS

group G associated with a given t from the indicated set has a Sylow p-subgroup

for each prime p that divides 2t − 1. Moreover, p − 1 divides |G|. Together with

the requirement that |M| be square-free, these conditions allow for one and only one

group G for each such t , as easy calculations show. This proves that the number of

groups of the specified type is finite and, that all groups of this type must appear on

the given list.

4. CONCLUSION AND OPEN QUESTIONS. This research originated with the

observation that S3, the symmetric group on three letters, has perfect order subsets.

Since we first began to explore this phenomenon, our investigations have focused

mainly on the abelian case, so the nonabelian case remains somewhat of a mystery.

In addition, the only known example of a minimal POS group that contains a non-

cyclic Sylow p-subgroup of odd order is

(Z2)
11 × Z3 × Z5 × (Z11)

2 × Z23 × Z89.

We conclude with a brief list of open questions.

• Are there nonabelian groups other than S3 that have perfect order subsets?
• Are there only finitely many minimal POS groups that contain noncyclic Sylow

p-subgroups of odd order?
• If G has perfect order subsets and some odd prime p divides |G|, then is it true that

|G| is divisible by 3?
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A Geometric Telescope

The two most basic series whose sums can be computed explicitly (geometric

series, telescoping series) combine forces to demonstrate the amusing fact that

∞∑

m=2

(ζ(m) − 1) = 1,

where ζ(s) =
∑∞

n=1 n−s is the Riemann zeta function. Namely,

∞∑

m=2

(ζ(m) − 1) =
∞∑

m=2

∞∑

n=2

1

nm
=

∞∑

n=2

∞∑

m=2

(
1

n

)m

=
∞∑

n=2

1/n2

1 − (1/n)
=

∞∑

n=2

1

n2 − n

= lim
N→∞

N∑

n=2

(
1

n − 1
−

1

n

)

= lim
N→∞

(

1 −
1

N

)

= 1 .
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